
[Sumalatha et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[740-746]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Automatic Test case Generation from UML Activity Diagrams
V.Mary Sumalatha*1, Dr G.S.V.P.Raju2

1 Research Scholar, Gitam University, Visakhapatnam, Andhra Pradeshm, India
*2 Professor,Andhra University, Visakhapatnam, Andhra Pradesh, India

vmsumalatha2002@gmail.com

Abstract
Test Case Generation is an important phase in software development. Nowadays much of the research is

done on UML diagrams for generating test cases. Activity diagrams are different from flow diagrams in the fact that

activity diagrams express parallel behavior which flow diagrams cannot express. This paper concentrates on UML

2.0 Activity Diagram for generating test cases. Fork and join pair in activity diagram are used to represent

concurrent activities. A novel method is proposed to generate test case for concurrent and non concurrent activities.

Proposed approach details about the importance of concurrent nodes and their execution order in path generation.

Keywords: UML Diagrams, Activity Diagrams, Concurrency, Partial Ordering, Precedence Diagramming.

 Introduction
The growth of powerful execution made parallel

programming became an essential nowadays.

Activity diagrams are different from flow diagrams in

the fact that activity diagrams express parallel

behavior which flow diagrams cannot express. Fork

and join pair in activity diagram are used to represent

concurrent activities. To generate test paths fork and

join pairs need to be explored. If a fork and join pair

contain a set of activities it is easy to generate test

paths. But the problem lies when there are decision,

merge, and nested fork join contained in them. Fork

node indicated by a synchronization bar initiates

concurrent activities in an activity diagram where no

sequential order is established. Join node indicated by

another synchronization bar stops all concurrent

activities.

Concurrency in Activity Diagrams

Many researchers proposed methods to

verify UML diagrams using XML and XMI.

Attribute grammar techniques are used to check the

semantic consistency of UML diagrams in XML

[Kotb and Katayama,2004]. Activity Diagram was

presented in Human readable form called the Activity

Diagram

Linear Form which was in Text format

[Falter et al.,2007. Activity diagrams were presented

using Action Description Languages (ADL)

[Narkngam and Limpiyakon, 2012]. Enhancements

were made to Action Description languages to verify

Activity Diagrams to reduce defects and to consume

fewer resources during software development

[Kaewchinporn and Lilpiyakorn, 2013]. Activity

diagrams are different from flow diagrams in the fact

that activity diagrams express parallel behavior

which flow diagrams cannot express. This paper

concentrates on UML 2.0 Activity Diagram for

generating test cases. Activity diagrams can be

classified into two types based on concurrency, non

concurrent activity diagrams, and concurrent activity

diagrams. A fork and join pair in an activity diagram

are used to process activities in parallel. Four

categories of fork and join pairs are defined by [Xu et

al., 2005] namely atomic, simple, nested, and

branched fork and join pairs. These categories are

further simplified basing on branches present in

between fork and join pair.

Figure 1: Categories of Fork and Join pairs

http://www.ijesrt.com/

[Sumalatha et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[740-746]

Simple fork and join pair
Simple fork and join contains set activities

that can be executed in parallel. Fork node may

contain two or more outgoing edges from it and join

node may contain two or more incoming edges to it.

These are further categorized into simple fork and

join with only activities, simple fork and join with

decision and merge. Simple with decision and merge

are further classified into simple fork and join with

loops, Simple fork and join with branching. Simple

fork and join with loops contains set activities that

can be executed in parallel and a set of activities that

loop for n number of times. simple fork and join pair

with branching contains set activities that can be

executed in parallel and a set of activities contain a

decision and a merge node which are used to select

alternate paths so that some paths are skipped while

executing.
\Figure 2.a Simple fork

and join

Figure 2.b Two separate fork

and join pairs

Figure 3.a Fork and join pair

with two alternate paths

Figure 3.b Fork and join

pair with a loop

Nested fork and join.
Nested fork and join pair contains another

set of fork and join pair with set activities that can be

executed in parallel. In this type the inner most fork

join pair needs to be executed before the outer pair

starts execution. These are further classified into

nested fork and join with only activities, with

decision and merge. Nested fork and join with

decision and merge are classified into nested fork and

join with loops, with branching. Nested fork and join

with branching contains another set of fork and join

pair with set activities that can be executed in

parallel. Either of the fork and join pairs contains a

decision and merge node to skip some activities.

Nested fork and join with loops contains another set

of fork and join pair with set activities that can be

executed in parallel. Either of the fork and join pairs

contains a loop which indicates that some activities

need be executed for n number of times

Figure 4.a

Nested fork and

join pair

Figure 4.b Nested

fork and join with

alternate paths

Figure 4.c Nested

fork and join with

a loop

Literature survey
 Debasish Kundu and Debasis Samanta

proposed a novel approach to generate test cases

from Activity Diagrams which works for both

concurrent and non concurrent paths [Debasish

Kundu and Debasis Samanta, 2009]. They proposed

Basic path, simple path, Activity path coverage

criteria to generate test cases. Proposed approach

defines two types of paths, non concurrent activity

paths and concurrent activity paths. A precedence

relation has been defined to find all relations that

happened before fork, after join nodes between fork

and join. To generate test paths DFS is applied for

non concurrent and BFS is applied for concurrent

activities. Instead of displaying set of concurrent

paths, one path called as representative activity path

is generated by applying BFS for the fork and join

pair. Proposed work avoids loops or alternate paths

between fork and join pair.

 Chen Mingsong et al., proposed an

automatic test case generation technique for Activity

Diagrams with non concurrent paths based on

execution traces [Chen Mingsong et al., 2006] To

generate paths which include concurrent activities a

slight change has been made to DFS algorithm to

http://www.ijesrt.com/

[Sumalatha et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[740-746]

cover all nodes between fork and join pair. Proposed

work mainly concentrates on non concurrent

activities and avoids loops and concurrency.

 Puneet Patel and Nitin N Patil proposed test

case generation from Activity Diagrams which

includes both concurrent and non concurrent

activities [Puneet Patel and Nitin N Patil, 2012]. A

novel test coverage criterion called activity path

coverage criterion was developed which works for

both loop testing and concurrent activities in Activity

diagrams. A relationship called precedence relation

was defined for concurrent activities.

a. Partial ordering and precedence ordering

in Activity Diagrams.

In Mathematics a pair (X,P) is called partially

ordered or a poset if X is a set and p is a reflexive,

antisymmetric, and transitive binary relation on X. X

is called as the ground set and P is a partial order on

X. for the first time Lamport in 1978 defined Partial

order between events using happened-before relation

[Lamport 1978].

Definition of Happened-before-relation. A

happened-before B if A and B are within the same

process and A occurred before B. If A happened

before B, B happened before C then A happened

before C.

Activity diagram with concurrent activities includes

the partial ordering of the activities. A partial

ordering on a set of activities is denoted using ‘<’. A

partial ordering between two activities A and B is

denoted as A<B represents that activity A happened

before activity B. in precedence diagramming method

four types of precedence namely finish to start, start

to finish, start to start and finish to finish are allowed.

b. Precedence diagramming method.
 Precedence diagramming method is similar to

happened before relation in posets. Precedence

diagramming method represents the precedence of

nodes that start first and that finish later.

Following are the types of precedence

diagramming relations between nodes.

1. Finish-to-Start. In finish to start precedence

relationship Activity B cannot start until

Activity A has completed. In most

schedules, all relationships will be finish-to-

start.

2. Start-to-Finish. In Start-to-finish precedence

relationship Activity A must start before

Activity B can finish. This is a very rare

relationship.

3. Start-to-Start. In start to start precedence

relationship Activity A must start before

Activity B can start.

4. Finish-to-Finish. In finish to finish

precedence relationship Activity A must

finish before Activity B can finish.

When these four precedence relationships are applied

to Activity diagrams applicability of all four

precedence relationship is not guaranteed.
Figure 5: Simple Fork and Join pair.

In the above figure Finish to Start precedence are

A<B, C<D. Finish to Finish precedence are B<Join,

D<Join. Start to Start precedence are Fork<A,

Fork<C. combining all the above precedence the

allowed paths are

1. Fork<A<B<C<D<Join.

2. Fork<A<C<B<D<Join.

3. Fork<A<C<D<B<Join.

4. Fork<C<D<A<B<Join.

5. Fork<C<A<B<D<Join.

6. Fork<C<A<D<B<Join.

While dealing with concurrency all nodes that

happened before or the precedence relationships need

to be determined. To find all happened before

relations between join and fork pair we apply

adjacency list representation of a graph which

represents all happened before relations. Adjacency

list for a directed graph with n nodes and e edges is a

list that contains vertex j if there is an edge between

vertex i and vertex j.

Proposed Method
The complexity generating test paths

increase when concurrency, loops, nesting are present

in the Activity Diagram. The numbers of paths to be

generated increases drastically when there are more

number of nodes between fork and join pair. The

main aim of concurrency is to execute nodes

independently. So instead of generating a set of

concurrent paths we generate a single path in which

loops and alternate paths are traversed between fork

and join pairs. Complexity increases when more

number of nodes is involved in between a fork and

join pair. For a simple fork and join pair with 4

activities in between generates 6 paths, if one more

activity is added with two outgoing nodes from fork

node then the number of paths become 10. For 5

activities with 3 outgoing edges from fork node

http://www.ijesrt.com/

[Sumalatha et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[740-746]

generates nearly 30 paths. So in the case of nested

fork and join pair the complexity gets doubled. So to

trace the paths between fork and join pair two well

known strategies DFS and BFS are applied to

generate paths. DFS produces the

Fork<A<B<C<D<join and BFS produces

Fork<A<C<B<D<Join. In simple fork and join pairs

any of these techniques suites well. But the problem

arises when there is a decision merge pair in fork and

joins pair. Applying BFS to generate test paths may

choose all alternate paths which violates the

definition of decision node and is not proper to apply

in all cases. By applying DFS produces different

paths but violates the definition of parallel execution

and limits it to sequential execution. The overall aim

of parallel execution lies in the fact that activities can

be executed at the same and every activity must be

executed at least once except in the case of looping

and skipping. So this paper concentrates on finding

paths that execute all activities at least once.

So whether it is the case of simple fork and join pair

or nested fork and join pair, one thing is guaranteed

that every node must be executed at least once. For

this, the proposed approach makes modifications to

the activity diagram graph by allowing only one

incoming and one outgoing nodes to both fork and

join nodes. But according to OMG standard fork can

have multiple outgoing and join can have multiple

incoming nodes. The flow between the fork and join

pairs is changed in such a way that the activities from

the fork node get executed from left to right, and path

by path. After traversing the first path using DFS the

flow is connected to the second path and the entire

procedure is repeated until join node is reached. By

the end of this traversal fork and join nodes will have

one incoming and one outgoing nodes. The same

procedure is applied to nested fork and joins pair with

loops and alternate paths. Consider the following

activity diagrams. The simple fork and join pair is

modified to generate a single path, nested fork and

join pair is modified to generate a single path.

To make these modifications the number of outgoing

nodes for fork and number of incoming nodes for join

are stored in two separate arrays. Staring from the

first outgoing node from fork node, DFS is applied

and every node is added to the graph until join is

reached. Once the join node is reached instead of

pointing to the join node the flow continues to the

second outgoing node of fork node. The process is

repeated until all outgoing and incoming nodes are

traversed for fork and join nodes. Then the last node

is connected to join.

a. Pseudo code for dealing with concurrent

nodes: Modified Activity Diagram graph.

Input: Edge, Node description tables, stack s.

Node description table contains 3 columns namely

type of the node, node id, node name in the diagram.

Edge description table contains 2 columns namely

source node id and target node id.

Output: Modified Activity Diagram Graph, Modified

Edge description table.

Begin

For i:=1 to number of edges in NDT

Begin

If ntype == “ForkNode’ flag=1 else flag == 0; end If;

End for;

If flag==0 then exit

Else

Begin

For i:= 1 to number of elements in NDT

For j=1 to number of elements in EDT

If from[j] in EDT != “ForkNode” in NDT or to[j] in

EDT != “JoinNode” in NDT copy the elements in

EDT

Else If ntype == “ForkNode”

Begin Store all outgoing edges from frknode in

frkfrom array let its length be m.

Push the forknode id onto stack. End;

Else If ntype == “JoinNode”

Begin Store all incoming edges to joinnode in frkto

array let its length be n.

Pop element from stack and store it in forknode

variable. End;

End for

End for

Add a row to EDT with from=forknode id, its to ==

frkfrom[1];

For k=1 to number of n -1

For l=2 to number of n,

Add a row to EDT with from = Frkto[k] and to

=frkfrom[l];

End for

End for

Add a row to EDT with From = Frkto[n] and To =

joinnode id;

End else

End.

Consider the following Activity Diagram and its

equivalent activity diagram graph and modified

Activity Diagram graph.

http://www.ijesrt.com/

[Sumalatha et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[740-746]

Figure 6.a

Activity

Diagram

Figure 6.b

Activity

diagram

graph

Figure 6.c

Modified Activity

Diagram graph in

which DFS is

applied for

concurrent nodes.

Node description Table of the Activity Diagram is

Node

type

Node ID Node

name

Initial

Node

f8LtjEKGAqACAgRS Initial

Node

Fork

Node

CUftjEKGAqACAgRl F1

Activity

Action

eNIdjEKGAqACAgT1 S1

Activity

Action

Hg4djEKGAqACAgU

M

S2

Activity

Action

IMkdjEKGAqACAgUc

S3

Join

Node

posdjEKGAqACAgUs J1

Activity

FinalNo

de

0rldjEKGAqACAgVt Activity

FinalNod

e

Edge Description Table is

Source ID Destination ID

f8LtjEKGAqACAgRS CUftjEKGAqACAgRl

CUftjEKGAqACAgRl eNIdjEKGAqACAgT1

CUftjEKGAqACAgRl Hg4djEKGAqACAgUM

CUftjEKGAqACAgRl IMkdjEKGAqACAgUc

eNIdjEKGAqACAgT1 posdjEKGAqACAgUs

Hg4djEKGAqACAgUM posdjEKGAqACAgUs

IMkdjEKGAqACAgUc posdjEKGAqACAgUs

posdjEKGAqACAgUs 0rldjEKGAqACAgVt

Modified Edge Description table is

Source ID Destination ID

f8LtjEKGAqACAgRS CUftjEKGAqACAgRl

posdjEKGAqACAgUs 0rldjEKGAqACAgVt

CUftjEKGAqACAgRl eNIdjEKGAqACAgT1

eNIdjEKGAqACAgT1 Hg4djEKGAqACAgUM

Hg4djEKGAqACAgUM MkdjEKGAqACAgUc

IMkdjEKGAqACAgUc posdjEKGAqACAgUs

Test Path printing
Concurrency and path printing are related to

each other because if a n Activity Diagram contains

fork join pair it needs to dealt separately and

happened before relation defined in the previous

section needs to be satisfied. Here in path printing we

divide this step into two parts for convenience to

print paths for activity diagrams without concurrent

nodes and printing paths for activity diagrams with

concurrent nodes.

1. Test path printing from Activity Diagram

Graph without concurrent paths.

This section includes visiting the nodes of an Activity

Diagram graph in a systematic order using a search

algorithm. Basic search algorithms used t traverse

graphs are Depth First search and Breadth First

Search algorithms. To print all paths in an Activity

Diagram Graph we combine Simple Graph Coloring

and Depth First Search algorithm to traverse all

nodes and edges at least once. DFS starts with the

initial node and visiting node by node going away

from the initial node to reach the end node and the

same process is repeated to print all paths until all

nodes become visited. Graph coloring is used to

assign colors to each vertex of a graph. The only

condition to be satisfied in graph coloring is that no

two adjacent vertices should share the common color.

In test path printing of Activity Diagrams every node

is colored only if a node is visited twice if decision

nodes are present else it remains uncolored.

2. Test path printing from Activity Diagram

Graph with concurrent and non concurrent paths.

Test paths are generated from Activity Diagrams

starting from Initial node to Activity Final node.

Proposed work applies DFS for Activity Diagrams

with concurrent and non concurrent nodes to generate

a single activity path between fork and join pair

which is one among the set of concurrent paths to be

generated. The activity path generated covers all

nodes between fork and join pair at least once.

Proposed work generates activity paths for nested

fork and joins pairs, fork and join pair with loops,

simple fork and join pair without loops, fork and join

pair with decision and merge pair in between to

http://www.ijesrt.com/

[Sumalatha et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[740-746]

generate alternate paths. Loops are executed until all

nodes are executed at least once.

If the Activity diagram contains no loops, concurrent

activities, then simple Depth first Search algorithm is

sufficient to print all paths. If loops, alternate paths,

concurrent activities are present the DFS is modified

slightly so that every loop gets executed at least once

and every alternate path gets printed once. The

modification done to generate paths is the number of

times a node can get visited depends on the number

of decision nodes present. If two decision nodes are

present a node gets visited twice , if two decision

nodes are present then a node gets a change of being

visited for 4 times. Back tracking is allowed to print

alternate paths by using adjacency matrix

representation.

Pseudo code. Generate Activity Paths using

Modified DFS Algorithm.

Input : Node, Edge description tables, srcpos, dstpos.

Output: set of activity paths.

Begin

Initialize an array al to empty to store all nodes

traversed till now.

Generate an adjacency matrix using Edge Description

table, which contains 1 if an edge is present between

two node else 0 is assigned.

Traverse the activity diagram graph using DFS. For

each node visited increase the number of counts.

Store the node in the array al.

Start with Initial node’s position from Node

Description table as src. Add src to al. increment

visited[src] by 1.

 If visited[src]==2 then color[src]=true else if

visited[src]==1 then color[src]=false;

End

If src==dst then print all nodes stored in al

Else

Begin

Find the adjacent node from src by traverse the

adjacency matrix with row number=src and find at

least one column I with value 1 in it.

Find if that node is not colored then call DFS with src

as I.

If more than one column has 1 in it then back track to

the next value and continue DFS with that column

value.

End.

Case study Login screen
Consider the case study Login Screen use

case which waits for the user to enter user name and

password. The entered username and password are

verified. If the login is valid the user is given a

chance to change password if it is first login. If the

login is invalid an error is recorded and user is

requested to enter new username and password.

Login Screen use case, its adjacency list, and the test

paths generated are as follows.
Figure 7: Login Screen Use Case

Adjacency list.

mtYU9SKGAqACAgT : chb.8AKGAqACAQ0h

uB2.8AKGAqACAQzL : wtp.8AKGAqACAQzu

mtYU9SKGAqACAgT_

PLq.8AKGAqACAQy8 : 33c0aeac-096f-48

chb.8AKGAqACAQ0h : 54P.8AKGAqACAQ01

iX8.8AKGAqACAQye : 38S.8AKGAqACAQyq

uB2.8AKGAqACAQzL 33c0aeac-096f-48 :

pkI.8AKGAqACAQx6

ogU.8AKGAqACAQyM : iX8.8AKGAqACAQye

38S.8AKGAqACAQyq : PLq.8AKGAqACAQy8

E0Q.8AKGAqACAQxs : 33c0aeac-096f-48

wtp.8AKGAqACAQzu : mtYU9SKGAqACAgT_

pkI.8AKGAqACAQx6 : ogU.8AKGAqACAQyM

Test paths generated.

InitialNode MergeNode Ask-for-username-

and-password Verify-username-and-password valid-

login Notify-user Record-error MergeNode Ask-

for-username-and-password Verify-username-and-

password valid-login First-login Include-change-

password JoinNode Welcome-user-to-the-system

ActivityFinalNode

http://www.ijesrt.com/

[Sumalatha et al., 3(5): May, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[740-746]

InitialNode MergeNode Ask-for-username-and-

password Verify-username-and-password valid-

login Notify-user Record-error MergeNode Ask-

for-username-and-password Verify-username-and-

password valid-login First-login JoinNode

Welcome-user-to-the-system ActivityFinalNode

InitialNode MergeNode Ask-for-username-and-

password Verify-username-and-password valid-

login First-login Include-change-password

JoinNode Welcome-user-to-the-system

ActivityFinalNode

InitialNode MergeNode Ask-for-username-and-

password Verify-username-and-password valid-

login First-login JoinNode Welcome-user-to-the-

system ActivityFinalNode

Conclusion
In this paper we proposed an approach for

dealing with concurrent and non concurrent activities

in Activity Diagrams. Proposed method is efficient as

it deals with concurrency, loop testing and alternate

paths. The approach can also be applied to nested

fork and join pairs with loops and alternate paths.

The main importance of the approach is that every

node, every edge and every loop in the Activity

Diagram gets executes at least once. This approach

ensures in reducing cost of software development and

improves the quality of the software.

References
[1] Yasser Kotb, Katsuhiko Gondow and

Takuya Katayama, , 2004, “Optimizing the

Execution Time for Checking the

Consistency of XML Documents”, in

Journal of Intelligent Information Systems

(JIIS). Kluwer Academic Publishers. Vol.

22, No. 3, pp. 257-279

[2] David Flater , Philippe A. Martin, Michelle

L. Crane, 2007, “Rendering UML Activity

Diagrams as Human-Readable Text”.

National Institute of Standards and

Technology.

[3] Narkngam, C., Limpiyakorn, Y., 2012

“Rendering UML Activity Diagrams as a

Domain Specific Language - ADL.” 24th

International Conference on Software

Engineering and Knowledge Engineering,

San Francisco Bay, pp. 724–729.

[4] Chinnapat Kaewchinporn and Yachai

Limpiyakorn, March, 2013 "Enhancement of

Action Description Language for UML

Activity Diagram Review" International

Journal of Software Engineering and Its

Applications Vol. 7, No. 2.

[5] Xu, D., Li, H., Lam, C.P., 2005 “Using

Adaptive Agents to automatically Generate

Test Scenarios from the UML Activity

Diagrams”, Proceedings of the 13th Asia-

Pacific Software Engineering Conference.

[6] Debasish Kundu amd debases Samamta

2009, “A Novel Approach to generate Test

Cases from UML Activity Diagrams”,

journal of Object technology, Vol 8, pp 65 –

85

[7] Chen mingsong, Qiu Xiaokang and Li

Xuandog 2006, “Automatic Test Case

Generation for UML Activity Diagrams”,

ACM, pp 2 – 8

[8] Chen mingsong, Qiu Xiaokang and Li

Xuandog 2006, “Automatic Test Case

Generation for UML Activity Diagrams”,

AST, National natural Science Foundation

of China

[9] Puneet Patel and Nitin N Patil 2012, “Test

Case formation using UML Activity

Diagrams”, World Journal of Science and

Technology, vol 2, pp 57-62

[10] Leslie Lamport 1978, “Time, Clocks and the

ordering of Events in a Distributed System”.

Communications of the ACM, 21(7), 558-

565.

http://www.ijesrt.com/

